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Abstract--This paper describes a ilexible agent-based eco- 
logical fomcasting system that combines moltiple distributed 
data sources and models to provide near-real-time answers to 
questions about the state of the Earth system We build on novel 
techniques in automated constraint-based planning and natural 
language interfaces to automatically generate data products 
based OD descriptions of the desired data prducts. 
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The latest generation of NASA Earth Observing System 
(EOS)[l] satellites has brought a new dimension to con- 
tinuous monitoring of the living part of the Earth System, 
the biosphere. EOS data can now provide weekly global 
measures of vegetation productivity and ocean chlorophyll, 
and many related biophysical factors such as land cover 
changes or snowmelt rates. However, the highest economic 
value would come from forecasting impending conditions of 
the biosphere, to aiiow decision makers to midgare dangers 
or exploit positive trends. NASA's strategic plan for the Earth 
Science Enterprise identifies ecological forecasting as a focus 
for research. Ecological forecasting predicts the effects of 
changes in the physical, chemical and biological environment 
on ecosystem activity. Possible applications of such a system 
include predicting shortfalls or bumper crops of agricultural 
production, or West Nile virus epidemics or wildfire danger 
in time to allow improved preparation and logistical efficiency. 

Petabytes of remote sensing data are now available to 
help measure, understand and forecast changes in the Earth 
system, but using these data effectively can be surprisingly 
hard. The volume and variety of data files and formats are 
daunting. Simple data management activities, such as locating 
and transferring files, changing file formats, gridding point 
data, and scaling and reprojecting gridded data, can consume 
far more personnel time and resources than the actual data 
analysis. Some scientists commit to a particular data source 
or resolution just because using anything different would be 
more effort that it's worth. 
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Better tools can help, but most of the tools developed to 
date are little more than shell scripts; they lack the flexibility 
to meet the diverse needs of users and are difficult to extend 
to handle changes in available data sources. 

We are developing a more adaptable solution, based on au- 
tomated constraint-based planning and a flexible component- 
based architecture. Unlike script-based approaches, where the 
instruction sequences for managing and processing data are 
hand-coded, in our planner-based approach, the instruction 
sequences are automatically generated based on user requests 
and available data sources. New data sources, models or data- 
processing programs can be added in a plug-and-play fashion, 
and the planner can adapt to errors or data dropouts by trying 
alternative ways of achieving the same goal, such as using 
other, possibly lesser quaiity, data sources. 

We have demonstrated this technology in the Terresmal 
Observation and Prediction System (TOPS), an ecological 
forecasting system that assimilates data from Earth-orbiting 
satellites and ground weather stations to model and torecast 
conditions on the surface, such as soil moisture, vegetation 
growth and plant stress. The planner identifies the appropriate 
input files and sequences of operations needed to satisfy a data 
request, executes those operations on a remote TOPS server, 
and displays the results, quickly and reliably. 

A. Overview 
The architecture of the agent is described in Fig. 1. The 

major components of this architecture can be executed on 
different machines and communicate over the Internet, and 
the execution of plans can also be distributed, to exploit the 
intrinsic parallelism of dataflow plans. In the remainder of the 
paper, we describe a few of the components of this architecture 
in more detail: . DPADL: Section I1 discusses the Data Processing Action 

Description Language (DPADL) [2], which is used to 
provide action descriptions of models, filters and other 
programs as well as descriptions of available data sources. 
Goals, in the form of data product requests, can also be 
described in DPADL. DPADL is an expressive, declar- 
ative language with Java-like syntax, which allows for 
arbitrary constraints and embedded Java code. 
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Fig. 1. Agent Architecture 

User Interface: Section I11 discusses the user interface. 
Although DPADL is a powerful, expressive language, it is 
more appropriate for programmers than naive users. We 
provide a simplified form-based Web interface to allow 
users to submit typical requests. For more advanced use, 
we are also developing a natural language interface (NLI), 
which will allow complex data requests to be posed in an 
intuitive manner. 
DOPPLER Planner: Section IV discusses the planner, 
which accepts goals in the form of data descriptions 
and synthesizes dataflow programs using the action de- 
scriptions read in by the DPADL parser, consistent with 
information stored in the database. 
JNET Section V discusses the constraint solver, JNET, 
which can handle numeric and symbolic constraints, 
as well as constraints over strings and even arbitrary 
Java objects. The latter are evaluated by executing the 
code embedded in constraint definitions, specified in the 
DPADL input file. 
JDAF: Section VI describes JDAF, a framework that 
provides a common API for all TOPS data-processing 
programs and models for ecosystem forecasting. 

B. Ecological Forecasting 

As a demonstration of our approach, we have applied our 
agent, called IMAGEbot, to the .Terrestrial Observation and 
Prediction System (TOPS, http://www.forestry.umt.eddntsg/- 
Projects/TOPS/), an ecological forecasting system that assimi- 
lates data from Earth-orbiting satellites and ground weather 
stations to model and forecast conditions on the surface, 
such as soil moisture, vegetation growth and plant stress [3]. 
Prospective customers of TOPS include scientists, farmers 
and land managers. With such a variety of customers and 
data sources, there is a strong need for a flexible mechanism 
for producing the desired data products for the customers, 
taking into account the information needs of the customer, 
data availability, deadlines, resource usage (some models take 
many hours to execute) and constraints based on context (a 
scientist with a palmtop computer in the field has different 

Fig. 2. The IMAGEbot expert UI provides advanced capabilities for editing 
and debugging models, filters and data sources (left panel and DPADL editor 
window, not shown), inspecting and modifying dataflow plans (top panel), 
and viewing the results of plan execution (bottom panel). 

display requirements than when sitting at a desk). IMAGEbot 
provides such a mechanism, accepting goals in the form of 
descriptions of the desired data products. 

The goal of the TOPS system is to monitor and predict 
changes in key environmental variables. Early warnings of 
potential changes in these variables, such as soil moisture, 
snow pack, primary production and stream flow, could enhance 
our ability to make better socio-economic decisions relating to 
natural resource management and food production [4]. The ac- 
curacy of such warnings depends on how well the past, present 
and future conditions of the ecosystem are characterized. 

The inputs needed by TOPS include: 
Fractional Photosynthetically Active Radiation (WAR) 

Temperatures (minimum, maximum and daylight aver- 

Precipitation 
Solar Radiation 
Humidity 

We have several potential candidate data sources at the 
beginning of each model run. The basic properties of the 
inputs are listed in Table I. The specific data inputs that are 
selected will depend on goal constraints, such as requirements 
on resolution or coverage or resource limits. 

In addition to the attributes listed in the table, data sources 
also vary in terms of quality and availability - some inputs are 
not always available even though they should be. For example, 
both the Terra and Aqua satellites have experienced technical 
difficulties and data dropouts over periods ranging from a few 
hours to several weeks. Depending on the data source, different 
processing steps are needed to get the data into a common 
format. We have to convert the point data (CPC and Snotel) 

and Leaf Area Index (LAI) 

age) 
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Source Variables 1 Frequency Resolution Coverage 

Terra-MODIS FPAR5Al i I day Ikm. 5OOm. 25Om globai 
Aqua-MODIS FPAFULAI 1 1 day lkm, 5oOm. 250m global 

AVHRR FPAFULAI 10 dav lkm dohal  I 

TABLE I 
TOPS INPUT DATA CHOICES 

Daily GPP 5/6/2004 

f 

0 30 4 6 3  526 53.50 

gC/rn*2 

F y  1 The Terrermal Obsen-anon and Predicuon Svstem (TOPS) generates 
dady nowcasts of biosphenc vanabies. such as Gross Pnmary Producuon 
(GPP1 

to grid data, and we must reproject grid data into a common 
projection, subset the dataset from its original spatial extent 
and populate the input grid used by the model. The data are 
then run through the TOPS model, which generates desired 
outputs. 

11. DPADL 
The Data Processing Action Description Language 

(DPADL) [2] is a planning domain description language 
specialized for data processing domains. It differs from 
other domain description languages, such as PDDL [5] by 
describing characteristics typical of data processing domains, 
such as complex data structures, object creation and copying, 
operations on large sets and integration of multiple software 
systems. 

DPADL differs from metadata languages such as the Earth 
Science Markup Language (ESML) in that DPADL is used 
to describe not only data, but the programs (models, filters, 

etc.) that process data, with a sufficient level of detail that it 
is possible to derive a DPADL description of the output of 
a dataflow plan given the DPADL descriptions of the inputs 
and the processing steps used to transform the inputs into 
the outputs. More importantly, the process can be reversed: 
given a DPADL description, it is possible to determine a set 
of data sources and a sequence of data processing steps that 
will produce a data product matching that description. That 
is the basis of how the DOPPLER planner works: Given a 
DPADL description of a requested data product (ix., a goal), 
the planner generates a sequence of data-processing steps (k., 
a plan) that will produce data matching the description ( i e . ,  
satisfying the goal). 

Since it is used to describe goals as well as data and data- 
processing components, DPADL may be viewed as the “power 
user” interface to the planner, just as SQL provides a powerful 
interface to a database. DPADL is, in fact, far more expressive 
than SQL. However, just as most of us use databases on the 
Web every day without ever typing an SQL query, we don‘t 
expect typical users to formulate their data product requests 
using DPADL. 

i i i .  USER iNTERFACE 

We are developing two alternative ways of submimng 
data product requests. For naive users, we have developed a 
simple form-based interface that allows users to select a goal 
template and instantiate that template with specific parameters 
to customize the goal to their requirements. For example, we 
have a template to display a false-color image of a selected 
Earth-system variable. Parameters of the template include the 
specific variable to display, the geographic region and the date 
of interest. The goal template itself is simply a parameterized 
DPADL goal, and the GUI form to customize it is generated 
automatically from the parameters of the goal, but the user 
needn’t know anything about that. Goal templates can be 
fairly general, so just a handful of them can cover most the 
data product requests that casual users are likely to submit. 
However, the space of possible goals that can be specified by 
this method is clearly limited, and this approach will not be 
adequate for expert users. 

Since expert users are likely to be scientists rather than pro- 
grammers, requiring them to submit their data product requests 
using DPADL is not realistic. instead, we are developing a 
natural language interface WI). Although it will still be less 
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expressive than DPADL itself, the NLI will allow users to pose 
a much richer set of requests than any form-based GUI, but 
without requiring them to learn a new language to do so. Our 
NLI is based on Precise, a novel Natural Language Interface 
for Databases (NLDB)  [6]. 

Precise takes English questions and maps them to the cor- 
responding database queries, enabling scientists who are not 
database programmers to formulate their queries in English. 
Precise combines lexical constraints, syntactic constraints 
from the English question, and semantic constraints from the 
database to rapidly narrow down the possible interpretations of 
a question. When multiple interpretations are possible, Precise 
asks the user to clarify the intended interpretation. Precise 
has two important properties that make it well suited for 
this project: portability and reliability. Precise is not tied to 
any particular database. Instead, it automatically generates its 
lexicon based on the vocabulary used in the database, and 
its semantic constraints are extracted from the schema of the 
database. 

As a result, it is convenient to port Precise for use on 
a broad range of databases. Precise takes several steps to 
ensure that it is reliable. In contrast with other systems, Precise 
analyzes every word in the user’s question. In addition, when 
it encounters ambiguity it refuses to settle for one of several 
interpretations. Instead, it asks the user to clarify the question 
in a manner that enables Precise to converge on the appropriate 
database query. 

We are in the process of adapting Precise to the task 
of generating DPADL queries and we will develop simple 
dialog strategies that help guide users towards clarifying their 
information requests. This is essential to enable users familiar 
with the Earth science domain but not familiar with the 
technology to specify data requests with minimal training. 

IV. DoPPLER PLANNER 

Data processing has traditionally been automated by writing 
shell scripts. There are some situations when scripts are the 
best approach: namely, when the same procedure is to be 
applied repeatedly on different inputs, the environment is fairly 
stable and there are few choices to be made. However, in 
many applications, including TOPS, none of these assumptions 
holds. There are many different data products we would 
like the system to produce, there are many inputs and data- 
processing operations to choose from in producing those 
products, and the availability of these inputs can change over 
time. To address these challenges, we developed a planner, 
called DoPPLER (Data Processing PLannER), to automate 
data processing. 

For our purposes, planning is a restricted form of automatic 
program synthesis, in which a plan, typically a loop-free 
sequence of actions, such as data-processing operations, is 
generated in response to a goal, a set of conditions that 
the plan must bring about. The goals DoPPLER accepts are 
descriptions of desired data products, and the plans it generates 
are dataflow programs, which produce the requested data 

A dataflow program is composed of data-processing oper- 
ations, each of which can have multiple inputs and outputs, 
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Fig. 4. Structured inputs and outputs to a TOPS model 

in which outputs of one action can be connected to inputs of 
another. Actions are eligible for execution as soon as their 
inputs are available, and multiple actions can be executed 
in parallel. This approach is well suited to supporting inter- 
operability among even legacy systems, because the planner 
can be used to connect these systems together in whatever 
way needed to achieve a particular goal. All that is needed is 
descriptions, in the form of planner actions, of the systems to 
be integrated. The approach leads to a design that is modular 
and evolvable, since any new component can be brought in 
by providing only a description of that component. Similarly, 
descriptions of individual components can be modified, and 
descriptions can exist for different versions of components, 
leading to a system that is maintainable. Libraries of such 
descriptions, which we call domain libraries, can be distributed 
along with the components they describe, leading to a plug- 
and-play architecture. 

There are significant differences between Earth Science data 
processing and more traditional planning domains, which calls 
for different techniques. Notable features of data processing 
domains include large dynamic universes, large plans, incom- 
plete information and uncertainty. 

A. Decisions, decisions 

As we discussed in Section I-B, we have a number of 
inputs to choose from, which are applicable under different 
circumstances. The data may come from several satellites, 
ground stations, or as outputs from other models, forecasts 
and simulations. 

In addition to input choices, we also have several choices 
of models to use with the data. As with the data, the models 
produce results of various quality, resolution, and geographic 
extent. Moreover, there may sometimes be significant trade- 
offs in performance versus precision. An FPARLAI algorithm 
provides a good example of this trade-off. We can produce 
an FPARILAI pixel using either a lookup table or a radiative 
transfer method [7] .  In the case of a lookup table, we derive 
a Normalized Difference Vegetation Index (NDVI) from two 
surface reflectance channels by a means of a simple equation, 
and than use the NDVI value together with its landcover value 
as a key into a static lookup table that will give us the FFAR 
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and LA1 values. The complexity of this algorithm is O( 1). On 
the other hand, we can use the radiative transfer method, which 
contains a large number of intermediate computations and has 
complexity O(nlogn). This fact, together with the number of 
runs we may attempt, translates into a substantial difference in 
user time, and while the radiative transfer method provides us 
with good results, it is not suitable for more interactive or first- 
pass applications, where the lookup table is sufficient. In these 
first-pass applications, we are looking for large abnormalities 
and deviations from long term normals, so high precision runs 
do not necessarily provide us with better results. 

Another reason for using different models at different times 
is their possible regional character. Some models are highly 
specialized and provide very good and precise results in only 
certain parts of the world. This is partially due to the fact that 
the scientists who develop these models have a great deal of 
knowledge about specific geographic areas (Pacific Northwest, 
the Amazons, etc.). They have collected large amounts of local 
data over the years, and were able to develop models whose 
outputs are highly accurate in these regions. We usually don’t 
want to use these models when we are concerned with global 
monitoring, but they are useful when we have identified an 
important event occurring at the region where we have a very 
accurate regional model. 

B. Large dynamic universes 

Over the last decade, great improvements have been made 
in the efficiency of planning and scheduling algorithms, thanks 
largely to the International Planning Competition and a corre- 
sponding set of benchmark planning problems that make such 
bake-offs possible. Unfortunately, this focus on benchmark 
problems has resulted in planners that are specialized for 
“puzzle problems,” which are very complex but nonetheless 
quite small in terms of the number of objects that must be ma- 
nipulated. Not only is the number of objects in these problems 
small, it is completely known and unchanging. Data processing 
domains are of a different character altogether. They are not as 
complicated as the benchmark “puzzle problems,” but they can 
be much larger, with thousands or millions of objects (such 
as data files), which are generally impossible to identify in 
advance. Furthermore, most actions create new objects, so 
the universe is not even static. Inspection of the planning 
problems from the Third International Planning Competition 
(IPC3) reveals that even the hard problems typically have 
fewer than 100 objects total. In contrast, if we consider a single 
product from a single instrument (MODIS) on a single satellite 
(say, Terra) for a single day, there are 288 tiles. To produce a 
given data product, we may need to consider multiple products 
from multiple instruments, residing on multiple satellites, and 
multiple days’ worth of data. 

Despite these differences, we would still like to benefit from 
the progress that has been made in developing fast planning 
algorithms, so we have adapted one of the principle techniques 
for fast planning, planning graph analysis [8] to work in a 
representation in which the objects cannot all be explicitly 
specified in advance. We have developed a representahon, 
called a lifed planning graph (Fig. 5),  in which variables 
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Fig. 5. Lifted planning graph with constraints 

are used to represent sets of possible objects. A planning 
graph (lifted or otherwise) is a layered graph representation 
of a planning problem in which the first layer consists of all 
conditions (represented in Fig. 5 using elliptical nodes) that 
are true at the start, the second layer consists of all actions 
(represented by rectangular nodes) whose preconditions are 
satisfied by the conditions in the first layer, the third layer 
consists of conditions that are enabled by the actions in the 
second layer, and so on. The graph continues in this way, with 
alternating condition and action layers, each layer providing 
support for the next. The first level that a condition appears at 

needed to achieve it. This lower bound proves to be a quite 
useful distance estimate in heuristic search algorithms, such 
as A*. 

In a traditional planning graph, each action node corre- 
sponds to a single ground action (i.e., an action with all its 
parameters specified). For example, if the sca l e  action takes 
a single file as input and a single numerical value specifying 
the scale factor, and if there are 5 input files and 5 possible 
scale factors, then there will be 25 instances of scale. one for 
each pair of input file and scale factor. Of course, in practice 
there will be many possible input files and infinitely many 
possible scale factors, so the traditional approach doesn’t work. 
In our lifted planning graph, we represent both the input file 
and the scale factor using variables, so only one instance of 
scale is needed. Then we use constraints to specify how these 
variable depend on other variables in the planning graph. For 
example, the s u e  of the output of sca l e  is a product of the 
size of the input and the scale factor. If the size of the output 
is determined by constraints on the goal and the size of the 
input is determined by the set of candidate images, then then 
the set of possible scale factors can be determined. We have 
developed a novel constraint propagation algorithm to perform 
this sort of reasoning on a lifted planning graph. 

iii L k  gii@ pic;idcs 2 bii~i ~ C G Z ~  GZ ~ ! e  Y G Z ~ Z  of S ~ P S  

v. CONSTRAINT REASONING 

Constraints appear at all levels in data-processing domains. 
At the problem level, we have constraints on time and 
resource consumption. For example, one of the objectives 
of the TOPS system is to perform the complete processing 
and analysis of data for a particular day no later than 8am 
the following day. If we have an algorithm that runs for 10 
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Fig. 6 Constrants in JNET can reference low-level objects and procedure 
calls in Java Virutal Machme (JVM), provldlng the “glue” between a dataflow 
plan and the runtlme environment in which it is executed 

hours and we know that the last data for the current day 
will be arriving around midnight, we cannot accomplish 
the goal and we should consider another algorithm. 
At the file level, we can have constraints on size, quality, 
etc. For example, we may not want to process files for 
regions with more than 80% cloud cover. In this case, we 
may have to use a different, and less cloudy, source of 
data. 
At the pixel level, constraints may specify subskts of one 

In 

or more datasets. For example, we may want to process 
data only for a certain country or region, or we may want 
to run an algorithm only during certain time periods. We 
may want to run the algorithm only on pixels of certain 
underlying type; for example, only for broad-leaf forests. 
Finally, during validation, we often compare satellite data 
with ground measurements, and we are only interested in 
specific points on the ground where we have validation 
measurements. 

order to deal with the many constraints that arise in a 
plan, we have developed a constraint reasoning system called 
JNET. As we discussed, JNET supports a novel algorithm 
for constraint propagation over lifted planning graphs. It also 
supports a number of other novel features, including: 

Powerful support for constraints on strings [9],  useful 
for capturing the often complex file naming conventions 
as constraints between file pathnames and other file 
properties. 
Constraints over sets of objects [IO]. 
Constraints over complex structures, such as data struc- 
tures (Fig. 4). 
Constraints over arbitrary Java objects, and defined in 
terms of arbitrary Java code. These are useful providing 
low-level integration between the planner and TOPS, 
which is written in Java (Fig. 6). 

VI. JAVA DISTRIBUTED APPLICATION FRAMEWORK 
(JDAF) 

In order to facilitate interoperation of the planner with 
the Earth science processing algorithms, as well as general 
extensibility and flexibility of the overall system, we have 
implemented the Java Distributed Application Framework 

(JDAF). Using this framework, we are able to easily integrate 
existing algorithms written in several different languages (c, 
C++, Fortran) into a complex application. While the algorithm 
integration is an important feature of the system, there is a 
provision for another integration, equally important - inte- 
gration of the acquired data needed for the processing. There 
has been an enormous increase in the data volume and the 
number of data sources over the past several years, and while 
some data are being duplicated (for example we can obtain 
FPARLAI data from MODIS-Terra, MODIS-Aqua, AVHRR, 
or MISR), they usually come in variety of formats ranging 
from simple binary to HDF-EOS. The different data formats 
often bring another complexity into the system integration 
process, because the system will require new I/O modules 
that can read these new formats. With these facts in mind, we 
are building our framework in a way that accommodates both 
data and algorithm fusion, so that we can add new algorithms 
and new data streams seamlessly to the existing system while 
minimizing the integration efforts. 

Since most of the Earth science algorithms are written 
in C or C++, we take advantage of Java Native Interface 
(JNI) facilities provided by the standard Java distribution. 
There is a single point of entry into and out of the native 
code, and we only use the Java interface for parameter 
passing between the processing algorithm and the rest of 
the system. This leads to a very simple design and a fast 
and efficient integration. On the Java side of the system, 
we provide a set of common APIs, which are implemented 
by each of the active objects (data pre-processing objects, 
processing algorithms, data analyzers). This makes it simple 
to form processing pipelines in a flexible manner, by either 
an application programmer, or by the planner. The simplicity 
of integration, flexibility, and fast deployment makes JDAF a 
good candidate for prototyping of new algorithm processing 
systems, competing with scripting languages such as Perl. 
Even though scripts are very suitable for fast prototypes, JDAF 
adds the flexibility and the distributed execution component 
not often available in common scripting languages. 

VII. RELATED WORK 
There has been little work in planner-based automation of 

data processing. Two notable exceptions are Collage [I 11 and 
MVP [12]. Both of these planners were designed to provide 
assistance with data analysis tasks, in which a human was in 
the loop, directing the planner. In contrast, the data processing 
in TOPS must be entirely automated; there is simply too much 
data for human interaction to be practical. Pegasus [I31 is a 
workflow planning system for computation grids, a problem 
similar problem to ours, though their focus is on mapping pre- 
specified workflows onto a specific grid environment, whereas 
our focus is on generating the workflows. 

Planning for data processing shares many characteristics 
with planning for information integration and planner-based 
software agents [14], The primary difference is the need in 
data-processing plans to reason about information that will 
never be known to the agent but is nonetheless essential to 
the task at hand - namely, the information contained in the 
data files that the agent must process. 



A number of frameworks have been developed for improv- 
ing interoperability among different data systems, such as 
the Earth System Modeling Framework [I51 and the Earth 
Science Markup Language 1161. What sets our work apart 
is the use of planning and scheduling software to automate 
the generation of data products based on user goals. Our 
aim is not to establish a competing standard but to support 
(and exploit) standards whenever they exist. For example, we 
are using ESML libraries in JDAF and we intend to support 
the translation between ESML metadata and DPADL data 
descriptions. However, expecting all systems to converge on 
a common standard is probably unrealistic. Our approach can 
help bridge the gap between legacy systems and emerging 
Standards. 

The EnVionmEnt for On-Board Processing (EVE) [17] 
is an execution framework for data-processing plans to be 
run on-board an Earth-orbiting satellite. Unlike IMAGEbot, 
EVE provides no planning capabilities; plans are generated 
by humans. 

The Amphion system [18] was designed to consmct pro- 
grams consisting of calls to elements of a software library. 
Amphion is supported by a first-order theorem prover. The task 
of assembling a sequence of image processing commands is 
similar to the task Amphion was designed to solve. However, 
the underlying representation we use is a subset of first-order 

The planning problem we address is considerably easier than 
general program synthesis in that action descriptions are not 
expressive enough to describe arbitrary program elements, 
and the plans themselves do not contain arbitmy loops or 
conditionals. 
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